
The Battle for Filter Supremacy: A Comparative Study of the
Multi-State Constraint Kalman Filter and the Sliding Window Filter

Lee E Clement, Valentin Peretroukhin, Jacob Lambert, and Jonathan Kelly

Abstract— Accurate and consistent egomotion estimation is
a critical component of autonomous navigation. For this task,
the combination of visual and inertial sensors is an inexpensive,
compact, and complementary hardware suite that can be used
on many types of vehicles. In this work, we compare two
modern approaches to egomotion estimation: the Multi-State
Constraint Kalman Filter (MSCKF) and the Sliding Window
Filter (SWF). Both filters use an Inertial Measurement Unit
(IMU) to estimate the motion of a vehicle and then correct this
estimate with observations of salient features from a monocular
camera. While the SWF estimates feature positions as part of
the filter state itself, the MSCKF optimizes feature positions in
a separate procedure without including them in the filter state.
We present experimental characterizations and comparisons of
the MSCKF and SWF on data from a moving hand-held sensor
rig, as well as several traverses from the KITTI dataset. In
particular, we compare the accuracy and consistency of the
two filters, and analyze the effect of feature track length and
feature density on the performance of each filter. In general, our
results show the SWF to be more accurate and less sensitive to
tuning parameters than the MSCKF. However, the MSCKF is
computationally cheaper, has good consistency properties, and
improves in accuracy as more features are tracked.

I. INTRODUCTION

The combination of visual and inertial sensors is a pow-
erful tool for autonomous navigation in unknown envi-
ronments. Indeed, cameras and inertial measurement units
(IMUs) are complementary in several respects. Since an IMU
measures linear accelerations and rotational velocities, these
values must be integrated to arrive at a new pose estimate.
However, the noise inherent in the IMU’s measurements is
included in the integration as well, and consequently the pose
estimates can drift unbounded over time. The addition of a
camera is an excellent way to bound this cumulative drift
error because the camera’s signal-to-noise ratio is highest
when the camera is moving slowly. On the other hand,
cameras are not robust to motion blur induced by rapid
motions. In these cases, IMU data can be relied upon more
heavily when estimating egomotion.

The question, then, is how best to fuse measurements
from these two sensor types to arrive at an accurate estimate
of a vehicle’s motion over time. This problem is often
complicated by the absence of a known map of features
from which the camera can generate measurements. Any
solution must therefore solve a Simultaneous Localization
and Mapping (SLAM) problem, although the importance
placed on mapping may vary from algorithm to algorithm.

Lee E Clement and Valentin Peretroukhin jointly assert first authorship.
All authors are at the Institute for Aerospace Studies, University of Toronto,
Canada {lee.clement, v.peretroukhin, jacob.lambert}
@mail.utoronto.ca, jkelly@utias.utoronto.ca

Fig. 1. The hand-held sensor head used in our experiments with the “Starry
Night” dataset. The IMU reports translational and rotational velocities,
while the stereo camera observes point features. Since we are comparing
monocular algorithms, we used measurements from the left camera of the
stereo pair only.

In this work we characterize, compare, and contrast the
performance of two modern solutions to the visual-inertial
SLAM problem, the Sliding Window Filter (SWF) and the
Multi-State Constraint Kalman Filter (MSCKF) [1], [2], on
data from a moving hand-held sensor rig, as well as several
traverses from the KITTI dataset [3]. The most similar work
to ours is that of Leutenegger et al. [4], which compares
the accuracy of the MSCKF to a keyframe-based SWF
on datasets consisting of relatively planar motion through
urban and indoor environments. In contrast to [4], our SWF
optimizes over a constant number of timesteps rather than
keyframes. We also conduct a more extensive characteri-
zation of the sensitivity of the MSCKF to certain tuning
parameters and compare both algorithms using data from a
hand-held sensor rig that mimics the more arbitrary motion
of a micro aerial vehicle (MAV).

II. BACKGROUND

Visual-inertial navigation systems (VINS) have been ap-
plied broadly in robotics [2], [5]–[10], and there is a con-
siderable body of work covering a wide range of esti-
mation algorithms for the camera-IMU sensor pair. These
techniques are often characterized as either loosely coupled
or tightly coupled. In loosely coupled systems, image and
IMU measurements are processed individually before being
fused into a single estimate, while tightly coupled systems
process all information together. The decoupling of inertial
and visual measurements in loosely coupled systems limits
computational complexity [4], but at the cost of information:

processing camera and IMU measurements separately makes
optimal estimation of biases impossible [9]. In this work, we
consider tightly coupled algorithms, which are preferable for
accurate and consistent visual-inertial navigation.

For both tightly coupled and loosely coupled VINS, a
popular estimator is the Extended Kalman filter (EKF) or
one of its variants [2], [6], [8], [10], [11], though methods
also exist that employ unscented Kalman filters [12], particle
filters [13], [14], or batch optimization methods [15], [16].

EKF-SLAM is an efficient recursive algorithm for small-
scale, online tasks, but maintaining the entire map as part
of the state is computationally expensive when navigating
over long distances. Indeed, the computational complexity
of EKF-SLAM scales far too poorly with the number of
features to be applied naively to this problem.

Furthermore, EKF-based VINS are inconsistent, that is,
the state uncertainties are underestimated. Prior work has
shown that this is due to the fact that the Jacobians in
the linearized model of a VINS have different observability
properties than the actual nonlinear system [9], [17].

Finally, EKF-SLAM is forgetful: because the filter state
includes only the most recent vehicle pose, a given update
step can never modify past poses even if later feature mea-
surements ought to constrain them. By locking in past poses,
EKF-SLAM condemns itself to sub-optimally estimating
both vehicle motion and feature positions.

The shortcomings of the EKF motivate the use of filters
that operate on a larger subset of the problem. Algorithms
operating in constant time with respect to map size are
particularly desirable. The SWF analyzed in this work is a
modern example of such algorithms, operating in constant
time by performing a batch optimization over a set number
of states, which is suboptimal but still leads to exceptional
accuracy for its cost. This makes the SWF useful for delicate,
large scale operations such as planetary landing [5]. The
MSCKF [1], [2] can be thought of as a hybrid of EKF-SLAM
and the SWF in the sense that it maintains a variable window
of poses and applies batch updates using all observations
of each landmark. It is also notable for its computationally
efficiency, achieving accurate, real-time position tracking
onboard a smartphone [18]. In Sections III and IV, we
discuss both the SWF and MSCKF in detail.

III. SLIDING WINDOW FILTER

The aim of the Sliding Window Filter (SWF) is to es-
timate a vehicle’s motion by optimizing a sliding window
of vehicle poses and observed landmarks. The optimization
problem in the SWF is typically solved as a non-linear least
squares problem using Gauss-Newton (GN) or Levenberg-
Marquardt (LM) optimization over a sliding window of K
poses xk∈[1,K] observing M features fj∈[1,M]:

x :=
[
xT

0 . . . xT
K pf1G T

G . . . pfMG T
G

]T
. (1)

In our notation, pBA
A is the vector from the origin of frame

FA to the origin of frame FB expressed in FA, CBA is the
rotation matrix from FA to FB , and 1 is the identity matrix.

The optimization applies an update, δx∗, by solving the
linear system:

(HTT−1H)δx∗ = −HTT−1e(x̄). (2)

Showing non-zero blocks only, the matrix H is given by

H =

−Hx,1 1

−Gx,1 −Gf ,1

.
...

−Hx,K 1
−Gx,K −Gf ,K

 , (3)

where

Gx,k =
[
G1

x,k . . . GM
x,k

]T
, (4)

Gj
x,k =

∂g

∂p

∣∣∣
p̄

fjCk
Ck

[
−CCGCIG,k

CCG(CIG,k(p
fjG
G − pIG

G,k))×

]T
, (5)

Gf ,k =

G1

f ,k

G2
f ,k
...

GM
f ,k

︸ ︷︷ ︸

jth block column position given by feature ID j ∈ [1,M]

, (6)

Gj
f ,k =

∂g

∂p

∣∣∣
p̄

fjCk
Ck

CCICIG,k, (7)

with

p̄
fjCk

Ck
:=

xy
z

 = CCI

(
CIG,k(p

fjG
G − pIG

G,k)− pCI
I

)
,

(8)

∂g

∂p

∣∣∣
p̄

fjCk
Ck

=
1

z2

[
fuz 0 −fux
0 fvz −fvy

]
. (9)

The weight matrix T is given by

T := diag {T1, . . . ,TK} , (10)

where

Tk :=

[
Hw,kQkHT

w,k 0

0 Gn,kRkGT
n,k

]
, (11)

and Rk, Qk are observation and motion model noise covari-
ances, and Gn,k, Hw,k are the observation and motion model
Jacobians with respect to the noise. An important advantage
of the SWF is that its computational cost depends on the
number of features in the current window rather than the
number of features in the entire map. By varying the spatial
or temporal extent of the sliding window, the computational
cost of the algorithm can be tailored to fit a given compute
envelope, which makes the algorithm suitable for online
operation over paths of arbitrary length.

However, the hard cut-off of the SWF may result in only
a subset of measurements of each feature contributing to
the optimization. As a result, the filter may not maximally
constrain some poses, and hence localization may be less
accurate than one would expect from the full batch solution.

IV. MULTI-STATE CONSTRAINT KALMAN FILTER

The Multi-State Constraint Kalman Filter (MSCKF) [1],
[2] can be thought of as a hybrid of EKF-SLAM and the
SWF. The key idea of the MSCKF is to maintain a variable
window of vehicle poses and to simultaneously update each
pose in the window using batch-optimized estimates of
features that are visible across the entire window. This update
step typically occurs when a tracked feature goes out of view
of the camera, but it may also be triggered if the length
of a feature track exceeds a preset threshold. Except where
otherwise noted (i.e., state parametrization in Section IV-A
and integration method in Section IV-C), we implemented
the MSCKF as presented in [1], [2].

A. MSCKF State Parametrization
We evaluated the MSCKF on datasets in which the IMU

‘measures’ gravity-corrected linear velocities rather than raw
linear accelerations (see Section V). To accommodate this
alternative sensor configuration, we parametrize the IMU
state at time k as the 13-dimensional vector

xI,k :=
[
qT
IG,k bT

ω,k bT
v,k pIG T

G,k

]T
(12)

where qIG,k is the unit quaternion representing the rotation
from the global frame FG to the IMU frame FI , bω,k is the
bias on the gyro measurements ωm, bv,k is the bias on the
velocity measurements vm, and pIG

G,k is the vector from the
origin of FG to the origin of FI expressed in FG (i.e., the
position of the IMU in the global frame).

At time k, the full state of the MSCKF consists of
the current IMU state estimate, and estimates of N 7-
dimensional past camera poses in which active feature tracks
were visible:

x̂k :=
[
x̂T
I,k q̂T

C1G
p̂C1G T
G . . . q̂T

CNG p̂CNG T
G

]T
.

We can also define the MSCKF error state at time k:

x̃k :=
[
x̃T
I,k δθTC1

p̃C1G T
G . . . δθTCN

p̃CNG T
G

]T
where

x̃I,k :=
[
δθTI b̃T

ω,k b̃T
v,k p̃IG T

G,k

]T
(13)

is the 12-dimensional IMU error state. In the above, x̃ de-
notes the difference between the true value and the estimated
value of the quantity x. The rotational errors δθ are defined
according to

δq := q̂−1 ⊗ q '
[

1
2δθ

T 1
]T

(14)

where ⊗ denotes quaternion multiplication.
Accordingly, the MSCKF state covariance P̂k is a (12 +

6N)× (12 + 6N) matrix that may be partitioned as

P̂k =

[
P̂II,k P̂IC,k

P̂T
IC,k P̂CC,k

]
(15)

where P̂II,k is the 12× 12 covariance matrix of the current
IMU state, P̂CC,k is the 6N × 6N covariance matrix of the
camera poses, and P̂IC,k is the 12 × 6N cross-covariance
between the current IMU state and the past camera poses.

B. MSCKF State Augmentation

When a new camera image becomes available, the MSCKF
state must be augmented with the current camera pose. We
obtain the camera pose by applying the known transforma-
tion

(
qCI ,p

CI
I

)
to a copy of the current IMU pose:

q̂CN+1G = qCI ⊗ q̂IG,k (16)

p̂
CN+1G
G = p̂IG

G + ĈT
IG,kp̂CI

I (17)

where ĈIG,k is the rotation matrix corresponding to q̂IG,k.
Assuming the MSCKF state has already been augmented

by N camera poses, we add the (N + 1)
th camera pose to

the state according to

x̂k ←
[
x̂T
k q̂T

CN+1G
p̂
CN+1G T
G

]T
(18)

and augment the MSCKF state covariance according to

P̂k ←
[
112+6N

Jk

]
P̂k

[
112+6N

Jk

]T
(19)

where the Jacobian Jk is given by

Jk =

[
ĈCI,k 03×6 03×3 03×6N(

ĈT
IG,kpCI

I,k

)×
03×6 13 03×6N

]
(20)

with 1m denoting the m-dimensional identity matrix and
0n×p an n× p matrix of zeros.

C. IMU State Estimate Propagation

The evolution of the mean estimated IMU state x̂I over
time is described by a continuous-time motion model:

˙̂qIG =
1

2
Ω (ω̂) q̂IG

˙̂
bω = 03×1

˙̂pIG
G = ĈT

IGv̂
˙̂
bv = 03×1 (21)

where ĈIG is the rotation matrix corresponding to q̂IG,

v̂ = vm − b̂v, ω̂ = ωm − b̂ω,

Ω (ω̂) =

[
−ω̂× ω̂

−ω̂T 0

]
, and ω̂× =

 0 −ω̂3 ω̂2

ω̂3 0 −ω̂1

−ω̂2 ω̂1 0

 .
In our implementation we propagate the motion model using
a simple forward-Euler integration rather than the fifth-order
Runge-Kutta procedure used in [2].

We can also examine the linearized continuous-time model
of the IMU error state:

˙̃xI = Fx̃I + GnI (22)

where the Jacobians F, G are given by

F =

−ω̂× −13 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

−ĈT
IGv̂× 03×3 −ĈT

IG 03×3

 (23)

G =

−13 03×3 03×3 03×3

03×3 13 03×3 03×3

03×3 03×3 03×3 13

03×3 03×3 −ĈT
IG 03×3

 , (24)

and nI =
[
nT
ω nT

bω
nT
v nT

bv

]T
is the IMU process

noise, which has covariance matrix QI .

D. MSCKF State Covariance Propagation

With reference to the partitions defined in (15), we com-
pute the predicted camera state covariances and IMU-camera
cross-correlations as follows:

P̂−CC,k+1 = P̂CC,k (25)

P̂−IC,k+1 = Φ (tk + ∆T, tk) P̂IC,k (26)

where ∆T is the IMU sampling period.
The state transition matrix Φ (tk + ∆T, tk) and the pre-

dicted IMU state covariance P̂−II,k+1 are computed accord-
ing to [19]:

Φ (tk + ∆T, tk) = 112 + F∆T (27)

P̂−II,k+1 = Φ (tk + ∆T, tk) P̂II,kΦT (tk + ∆T, tk)

+ GQIG
T ∆T. (28)

To improve numerical stability, we found it useful to enforce
the positive semi-definiteness of P̂−II,k+1 by making the
replacements

Pii ← |Pii| and Pij , Pji ←
1

2
(Pij + Pji) , i 6= j,

where Pij denotes the ith row and jth column of P̂−II,k+1.

E. Feature Position Estimation

When a tracked feature fj is selected for a state update,
the MSCKF estimates its position p̂

fjG
G using an inverse-

depth least-squares Gauss-Newton optimization. The proce-
dure takes as input N camera poses and N sets of “ideal”
pixel measurements, where “ideal” means that the pixel
measurements have been corrected for the camera intrinsics:

ẑ
(j)
i =

[
u′i v′i

]T
=
[
(ui − cu)/fu (vi − cv)/fv

]T
. (29)

We initialize the optimization by estimating the position of
feature fj in camera frame C1 using a linear least-squares
method with measurements from the first two camera frames,
C1 and C2:

p̂
fjC1

C1
:=
[
X̂

(j)
C1

Ŷ
(j)
C1

Ẑ
(j)
C1

]T
= λρ

fj
C1

(30)

where

ρ
fj
Ci

:=
1√

u′2i + v′2i + 1

[
u′i v′i 1

]T
(31)

is the direction of the ray emanating from camera Ci along
which feature fj must lie, and

λ =
[
(ATA)−1AT p̂C2C1

C1

]
1

(32)

with

A :=
[
ρ
fj
C1

−ρfjC2

]
. (33)

We can express the feature position in camera frame Ci

in terms of its position in camera frame C1 as

p̂
fjCi

Ci
= Ĉi1p̂

fjC1

C1
+ p̂C1Ci

Ci
. (34)

By forming the vector

ŷ :=
[
α β γ

]T
:=

1

Ẑ
(j)
C1

[
X̂

(j)
C1

Ŷ
(j)
C1

1
]T
, (35)

we can define three functionsh1(ŷ)
h2(ŷ)
h3(ŷ)

 = Ĉi1

αβ
1

+ γp̂C1Ci

Ci
(36)

and rewrite the camera measurement error as

e(ŷ) = ẑ
(j)
i −

1

h3(ŷ)

[
h1(ŷ)
h2(ŷ)

]
. (37)

The least-squares system then becomes

(ETW−1E)δy∗ = −ETW−1e(ŷ) (38)

where

E =
∂e

∂ŷ
and W = diag

{
R

(j)
1 , . . . ,R

(j)
N

}
(39)

with R
(j)
i = diag

{
σ2
u′ , σ2

v′

}
.

F. MSCKF State Correction
Now that we have estimated the positions of any features

to be used in the state update, we can apply the corresponding
motion constraints to the window of poses from which each
feature was observed. We begin by forming the exteroceptive
measurement error corresponding to an observation z

(j)
i of

feature fj from camera pose Ci:

r
(j)
i := z

(j)
i − ẑ

(j)
i (40)

where

ẑ
(j)
i =

1

Ẑ
(j)
Ci

[
X̂

(j)
Ci

Ŷ
(j)
Ci

]T
(41)

with

p̂
fjCi

Ci
=
[
X̂

(j)
Ci

Ŷ
(j)
Ci

Ẑ
(j)
Ci

]T
= ĈCiG

(
p̂
fjG
G − p̂CiG

G

)
. (42)

If we linearize (40) about the estimates for the camera
pose and feature position, we obtain an estimate of the
exteroceptive measurement error

r
(j)
i ' H

(j)
x,ix̃i + H

(j)
f,i p̃

fjG
G + n

(j)
i (43)

where H
(j)
x,i and H

(j)
f,i are the Jacobians of the measurement

of feature fj from camera pose Ci with respect to the filter
state and the position of the feature, respectively:

H
(j)
x,i =

[
0 J

(j)
i

(
p̂
fjCi

Ci

)×
−J

(j)
i ĈCiG 0

]
(44)

H
(j)
f,i = J

(j)
i ĈCiG (45)

500 550 600 650 700 750 800 850 900 950 1000

T
ra

n
s
.
R

M
S

E
 (

m
)

0

0.2

0.4

0.6
Effect of Nullspace Projection

Noise Correlated to State
Noise De-correlated from State

Timestep
500 550 600 650 700 750 800 850 900 950 1000R

o
t.
 R

M
S

E
 (

A
x
is

-A
n
g
le

)

0

0.05

0.1

0.15

0.2

0.25

Noise Correlated to State
Noise De-correlated from State

Fig. 2. Effect of correlation between measurement noise and filter state
on MSCKF performance. The correlation between the measurement noise
and the state causes the filter estimates to drift further from the true values
than with a modified, de-correlated measurement noise.

where the left 0 in H
(j)
x,i has dimension 2× (12 + 6 (i− 1)),

the right 0 has dimension 2× 6 (N − i), and

J
(j)
i =

1(
Ẑ

(j)
Ci

)2

Ẑ(j)
Ci

0 −X̂(j)
Ci

0 Ẑ
(j)
Ci

−Ŷ (j)
Ci

 . (46)

n
(j)
i is a zero-mean Gaussian noise term with covariance

matrix R
(j)
i = diag

{
σ2
u′ , σ2

v′

}
.

By stacking the errors r
(j)
i , we arrive at an expression for

the 2Mj×1 measurement error vector of feature fj over the
entire window of camera poses, where Mj is the number of
camera poses from which feature fj was observed:

r(j) = z(j) − ẑ(j) ' H(j)
x x̃ + H

(j)
f p̃

fjG
G + n(j) (47)

The noise vector n(j) has covariance matrix R(j) =
diag

{
R

(j)
1 , . . . ,R

(j)
Mj

}
.

However, the EKF assumes that measurement errors are
linear in the error in the state and have an additive zero-mean
Gaussian noise component that is uncorrelated to the state.
Since the term H

(j)
f p̃

fjG
G is correlated to the state, r(j) is

not of the correct form for the EKF and must be modified
to de-correlate it from the state. Figure 2 shows the effect of
attempting to use r(j) directly in the EKF. The correlation
between the measurement noise and the state causes the filter
estimates to drift further from the true values than with a
modified, de-correlated measurement error. As an aside, we
note that the SWF does not have this problem because feature
positions are jointly optimized along with the poses.

In order to transform r(j) into a usable form for the EKF,
we can define a semi-unitary matrix A whose columns form
the basis of the left nullspace of H

(j)
f , and project r(j) into

this nullspace to obtain an error equation of the correct form
(to first order):

r(j)
o := AT r(j) ' ATH(j)

x x̃ + 0 + ATn(j)

=: H(j)
o x̃ + n(j)

o (48)

Since H
(j)
f has full column rank, A has dimension 2Mj×

(2Mj − 3) and r
(j)
o has dimension (2Mj − 3) × 1. The

covariance matrix of n
(j)
o is given by R

(j)
o = ATR(j)A.

We can now stack all the errors r
(j)
o for all the features in

the current batch to arrive at

ro = Hox̃ + no. (49)

The dimension of this vector can be quite large in practice,
so we use the QR-decomposition of Ho to reduce the
computational complexity of the EKF update:

Ho =
[
Q1 Q2

] [TH

0

]
(50)

where Q1,Q2 are unitary matrices and TH is an upper-
triangular matrix. Substituting this result into (49) and pre-
multiplying by

[
Q1 Q2

]T
, we obtain[

QT
1 ro

QT
2 ro

]
=

[
TH

0

]
x̃ +

[
QT

1 no

QT
2 no

]
. (51)

Noting that the quantity QT
2 ro is only noise, we discard it

and define a new error term that we use in the EKF update:

rn := QT
1 ro = THx̃ + QT

1 no =: THx̃ + nn (52)

The covariance matrix of nn is given by Rn = QT
1 R

(j)
o Q1.

Finally, we can formulate the Kalman gain and correction
equations to arrive at the updated estimates for the filter state
and covariance:

K = P̂−k+1T
T
H

(
THP̂−k+1T

T
H + Rn

)−1

(53)

∆xk+1 = Krn (54)

P̂k+1 = (112+6N −KTH) P̂−k+1 (112+6N −KTH)
T

+ KRnKT . (55)

V. EXPERIMENTS

We compared the performance of the MSCKF and SWF
on two intervals in the “Starry Night” dataset recorded at
the University of Toronto Institute for Aerospace Studies
(UTIAS), as well as 534 m of urban driving from the KITTI
Dataset [3]. Both datasets include data streams from a stereo
camera and IMU. Since our algorithms are designed to make
use of a monocular camera, we artificially blinded the stereo
camera by using images from the left camera only.

We implemented and tested both algorithms in MATLAB
2014b on a MacBook Pro Retina (11,3) with a 2.3 GHz
Intel Core i7 processor and 16 GB of DDR3L RAM. We
initialized both filters with the first ground truth pose, and
obtained initial estimates of 3D feature positions using the
inverse-depth batch optimization of Section IV-E.

A. “Starry Night” Dataset

The “Starry Night” dataset consists of a rigidly attached
stereo camera and IMU (Figure 1) observing a set of 20
features while moving along an arbitrary 3D path. This
dataset is well-suited to evaluating SLAM algorithms since
ground truth from a Vicon motion capture system is available

500 550 600 650 700 750 800 850 900 950 1000

T
ra

n
s
.

R
M

S
E

 (
m

)

0

0.2

0.4

0.6
Window Size Comparison

IMU Only
MSCKF 5-Inf
MSCKF 10-50
MSCKF 20-100
SWF 10
SWF 50
SWF 100

Timestep
500 550 600 650 700 750 800 850 900 950 1000R

o
t.

 R
M

S
E

 (
A

x
is

-A
n

g
le

)

0

0.1

0.2

0.3

0.4

0.5

IMU Only
MSCKF 5-Inf
MSCKF 10-50
MSCKF 20-100
SWF 10
SWF 50
SWF 100

(a) At least three features are visible in 64% of the interval (500, 1000).
The number of visible features is frequently exceeds ten.

1215 1265 1315 1365 1415 1465 1515 1565 1615 1665 1715

T
ra

n
s
.

R
M

S
E

 (
m

)

0

0.2

0.4

0.6

0.8
Window Size Comparison

IMU Only
MSCKF 5-Inf
MSCKF 10-50
MSCKF 20-100
SWF 10
SWF 50
SWF 100

Timestep
1215 1265 1315 1365 1415 1465 1515 1565 1615 1665 1715R

o
t.

 R
M

S
E

 (
A

x
is

-A
n

g
le

)

0

0.1

0.2

0.3

0.4

0.5

IMU Only
MSCKF 5-Inf
MSCKF 10-50
MSCKF 20-100
SWF 10
SWF 50
SWF 100

(b) At least three features are visible in only 56% of the interval
(1215, 1715). The number of visible features rarely exceeds ten.

Fig. 3. Comparison of MSCKF, SWF, and IMU integration for multiple parameter settings on two intervals of the “Starry Night” dataset. The numbers
next to “MSCKF” in the legend refer to the minimum and maximum feature track lengths before an EKF update is triggered, while the numbers next to
“SWF” refer to the number of states in the sliding window.

for both the sensor head motion and the feature positions.
We conducted three experiments on this dataset to compare
the effect of feature visibility and window size on each
algorithm. We discuss each of these in turn.

1) Several visible features: In the first experiment, we
compared the SWF and MSCKF for various parameter
settings on an interval with many visible features. At least
three features are visible in 64% of this interval, and the
number of visible features is frequently in excess of ten.

Figure 3(a) shows translational and rotational root mean
squared errors (RMSE) for pure IMU integration and var-
ious parameter settings for the MSCKF and SWF. For the
MSCKF, we varied the maximum number of observations
before triggering an update and the minimum number of
observations for a feature track to be used in an update.
For the SWF, we varied the number of states in the window.
These parameters did not significantly affect the accuracy of
either filter, however Figure 3(a) shows some small gains in
accuracy for larger feature track lengths and window sizes.

On this interval, the SWF outperforms the MSCKF
in terms of both translational and rotational RMSE. The
MSCKF does not perform much better than pure IMU
integration on this interval, likely due to the overall low
number of feature tracks in this dataset.

2) Fewer visible features: In the second experiment, we
compared the SWF and MSCKF for various parameter
settings on an interval with few visible features. At least
three features are visible in only 56% of this interval, and
the number of visible features rarely exceeds ten. Moreover,
the features that are visible do not remain in view of the
camera for as long a time as in the first interval.

Figure 3(b) shows translational and rotational RMSE for
pure IMU integration and the same MSCKF and SWF
parameter settings as in Experiment 1. Compared to Experi-
ment 1, the difference in performance between the MSCKF
and SWF is less pronounced, with the exception of the
SWF’s clearly superior translational accuracy. Neither filter
performs substantially better than pure IMU integration on

this interval, again likely due to the overall low number of
feature tracks in this dataset.

3) Effect of feature density in synthetic maps: In order to
investigate the effect of feature density on the performance
of the MSCKF and SWF, we modified the “Starry Night”
dataset by creating synthetic feature distributions with larger
spatial extents and more features than the original dataset. We
constructed each dataset so that the larger maps contained the
same features as the smaller maps, plus additional features to
make up the difference. In each dataset, we retained the IMU
data from the original dataset and corrupted the synthetic
camera measurements with zero-mean Gaussian noise. By
generating longer feature tracks and increasing the number of
visible features, these synthetic datasets allowed for a clearer
comparison between the MSCKF and SWF.

Figure 4 compares translational and rotational RMSE
of the MSCKF, SWF, and pure IMU integration on three
synthetic datasets with 40, 60, and 100 features. With more
features, both algorithms consistently outperform pure IMU
integration, and the SWF outperforms the MSCKF by a wide
margin on all three datasets.

Note that the MSCKF’s performance improves as the
number of features increases, while the SWF’s performance
is not significantly affected by increasing feature count. This
result indicates that the MSCKF is much more sensitive to
feature density than the SWF. This may be due to the fact
that the MSCKF updates its state whenever a feature goes
out of view and does not associate tracks corresponding
to the same feature. If observations of a given feature are
frequently interrupted, each track will not constrain the full
set of poses from which the feature is visible. As feature
density increases, the number of long feature tracks is likely
to increase, and so the MSCKF benefits from more high-
quality motion constraints. Since the SWF always associates
all observations of each feature in a given window, it is not
sensitive to the contiguity of the feature observations.

Table I summarizes each algorithm’s performance on the
interval shown in Figure 4. As noted above, the SWF

1215 1265 1315 1365 1415 1465 1515 1565 1615 1665 1715

T
ra

n
s
.

R
M

S
E

 (
m

)

0

0.2

0.4

0.6

0.8
Feature Density Comparison

IMU Only
MSCKF 40
MSCKF 60
MSCKF 100
SWF 40
SWF 60
SWF 100

Timestep
1215 1265 1315 1365 1415 1465 1515 1565 1615 1665 1715R

o
t.

 R
M

S
E

 (
A

x
is

-A
n

g
le

)

0

0.1

0.2

0.3

IMU Only
MSCKF 40
MSCKF 60
MSCKF 100
SWF 40
SWF 60
SWF 100

Fig. 4. Comparison of Root Mean Squared Error (RMSE) of the MSCKF,
SWF, and pure IMU integration for three synthetic maps generated using
the IMU data in the interval (1215, 1715). The numbers next to “MSCKF”
and “SWF” refer to the number of features in the dataset (40, 60 or 100).

TABLE I
COMPARISON OF AVERAGE ROOT MEAN SQUARED ERROR (ARMSE),

AVERAGE NORMALIZED ESTIMATION ERROR SQUARED (ANEES), AND

COMPUTE TIME OF IMU INTEGRATION, MSCKF, AND SWF ON

SYNTHETIC DATASETS FOR THE INTERVAL (1215, 1715).

Feature Count

40 60 100

IMU Only Trans. ARMSE 0.3679 0.3679 0.3679
Rot. ARMSE 0.1452 0.1452 0.1452
ANEES 0.2850 0.2850 0.2850
Compute Time† 8.90 s 8.90 s 8.90 s

MSCKF Trans. ARMSE 0.2672 0.2550 0.2304
(20-100) Rot. ARMSE 0.1378 0.1247 0.0952

ANEES 10.18 12.03 16.76
Compute Time† 12.19 s 14.64 s 20.58 s

SWF Trans. ARMSE 0.1750 0.1687 0.1755
(25) Rot. ARMSE 0.0495 0.0377 0.0481

ANEES 2280 2093 2013
Compute Time† 114.3 s 175.9 s 245.3 s

† Running MATLAB 2014b on a MacBook Pro Retina (11,3) with
a 2.3 GHz Intel Core i7 processor and 16 GB of DDR3L RAM.

outperforms the MSCKF in terms of average RMSE on
both rotation and translation. It is worth noting, however,
that, on average, the MSCKF achieves low Normalized
Estimation Error Squared (NEES) values, which indicates
that the filter scores well on consistency if not on accuracy.
The average NEES values for the SWF are substantially
higher because the SWF treats each window independently
and has no built-in mechanism for propagating uncertainty
from window to window. The authors of [5] describe how
this can be remedied by marginalizing old poses, but we
did not implement this technique because our intent was to
directly compare the two algorithms in their simplest forms.

Another point in favour of the MSCKF is that the com-
putational effort required was an order of magnitude smaller
than for the SWF. The MSCKF may therefore be better suited
to platforms with limited computational resources, particu-
larly if they are operating in feature-rich environments.

TABLE II
COMPARISON OF AVERAGE ROOT MEAN SQUARED ERROR (ARMSE)

AND AVERAGE NORMALIZED ESTIMATION ERROR SQUARED (ANEES)
OF IMU INTEGRATION, MSCKF, AND SWF ON KITTI TRAVERSES.

KITTI Traverse

0001 0036 0051 0095

IMU Only Trans. ARMSE 0.7197 0.5131 0.7834 1.039
ANEES 0.1630 0.0092 0.1170 0.6254

MSCKF Trans. ARMSE 0.3492 0.4401 0.7530 0.8170
(5-Inf) ANEES 5.103 1.826 2.031 14.98

SWF Trans. ARMSE 0.3372 0.3778 0.5832 0.7196
(10) ANEES 358.3 703.2 1124 3767

B. KITTI Dataset

In addition to the “Starry Night” datasets, we also com-
pared the performance of the MSCKF and SWF over four
traverses from the KITTI dataset [3] totaling 534 m of
urban driving. We selected these particular traverses because
they contained few moving objects, which we found to be
common failure cases for both filters. To accommodate our
alternative state parametrization, we used the pre-integrated
linear velocity measurements provided in the dataset instead
of the raw linear accelerations from the IMU. We extracted
between 50 and 100 salient point features from the left
camera in the stereo pair using Speeded Up Robust Features
(SURF) [20] and tracked them temporally using Kanade-
Lucas-Tomasi (KLT) tracking [21]. We rejected outliers
using an M-estimator Sample Consensus (MSAC) [22] pro-
cedure with a 2-point similarity transform.

Figure 5 shows the RMSE of pure IMU integration, the
MSCKF, and the SWF over each of the four traverses we
tested, representative images from which are shown in Figure
6. Table II summarizes these results and reports NEES values
for each traverse. Similarly to the “Starry Night” results, both
algorithms outperformed pure IMU integration, and the SWF
slightly outperformed the MSCKF in terms of translational
RMSE. We did not consider rotational RMSE for the KITTI
traverses because ground truth was obtained from GPS and
did not provide reliable estimates of the entire 6DOF vehicle
pose. As expected, the reported ANEES values show that the
MSCKF produced estimates that were more consistent than
those of the SWF.

VI. CONCLUSIONS

On the datasets we tested, the SWF slightly outperformed
the MSCKF, but the MSCKF improved in accuracy with ad-
ditional features while the SWF was less sensitive to feature
quantity. In relatively featureless environments, neither filter
performed substantially better than pure IMU integration.

We stress that our inertial data was obtained from high-
quality IMUs and has been sanitized to account for gravity,
biases, and integration error. Using a consumer-grade IMU,
we expect that pure IMU integration would have performed
much worse, and that the benefit of the SWF and MSCKF
would have been more apparent in these cases.

Distance Travelled (m)
0 10 20 30 40 50 60 70 80 90 100

T
ra

n
s
.
R

M
S

E
 (

m
)

0

0.5

1

1.5
2011_09_26_drive_0001

IMU Only
MSCKF 5-Inf
SWF 10

(a) Translational RMSE on KITTI traverse 0001.

Distance Travelled (m)
0 20 40 60 80 100 120 140 160

T
ra

n
s
.
R

M
S

E
 (

m
)

0

0.5

1

1.5
2011_09_26_drive_0036

IMU Only
MSCKF 5-Inf
SWF 10

(b) Translational RMSE on KITTI traverse 0036.

Distance Travelled (m)
0 20 40 60 80 100 120

T
ra

n
s
.
R

M
S

E
 (

m
)

0

0.5

1

1.5

2
2011_09_26_drive_0051

IMU Only
MSCKF 5-Inf
SWF 10

(c) Translational RMSE on KITTI traverse 0051.

Distance Travelled (m)
0 20 40 60 80 100 120

T
ra

n
s
.
R

M
S

E
 (

m
)

0

0.5

1

1.5

2
2011_09_26_drive_0095

IMU Only
MSCKF 5-Inf
SWF 10

(d) Translational RMSE on KITTI traverse 0095.

Fig. 5. Translational RMSE over four traverses from the KITTI dataset [3] totaling 534 m of urban driving.

Fig. 6. Sample frames from the four KITTI traverses shown in Figure 5.

Although the SWF appears to produce more accurate pose
estimates than the MSCKF in many cases, the MSCKF is
less computationally intensive than the SWF and has better
consistency properties in its most basic form. However, in our
experiments we found the MSCKF to be much more sensitive
to tuning parameters than the SWF, sometimes diverging
wildly with small changes in parameters. We conclude that
the MSCKF may be a better choice of algorithm when
computational resources are limited and the operational envi-
ronment is feature-rich, but that the SWF may be preferable
in situations where robustness is paramount.

In future work we would like to investigate the sensitivity
of these algorithms to variations in other parameters such as
scene geometry, frame rate, field of view, and camera type
(e.g., stereo and omnidirectional cameras).

ACKNOWLEDGMENT

We would like to thank Prof. Timothy D. Barfoot for the use of the
“Starry Night” dataset prepared for the graduate state estimation
course, AER1513, taught at the University of Toronto.

REFERENCES

[1] A. I. Mourikis, “A Multi-State Constraint Kalman Filter for Vision-
aided Inertial Navigation (Tech Note),” pp. 1–20, 2006.

[2] A. I. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation,” in Proc. ICRA,
2007, pp. 3565–3572.

[3] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” IJRR, vol. 32, no. 11, pp. 1231–1237, 2013.

[4] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. T. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimiza-
tion,” IJRR, vol. 34, no. 3, pp. 314–334, 2015.

[5] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with
application to planetary landing,” JFR, vol. 27, no. 5, pp. 587–608,
2010.

[6] A. Huster, E. Frew, and S. Rock, “Relative position estimation for
auvs by fusing bearing and inertial rate sensor measurements,” in Proc.
OCEANS, vol. 3, 2002.

[7] D. G. Kottas, K. J. Wu, and S. I. Roumeliotis, “Detecting and dealing
with hovering maneuvers in vision-aided inertial navigation sys.”

[8] J. Kima and S. Sukkariehb, “Real-time implementation of airborne
inertial-slam,” in Proc. RSS, 2007.

[9] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based
visual-inertial odometry,” IJRR, vol. 32, no. 6, pp. 690–711, 2013.

[10] S. You and U. Neumann, “Fusion of vision and gyro tracking for
robust augmented reality registration.”

[11] D. G. Kottas and S. I. Roumeliotis, “Exploiting urban scenes for
vision-aided inertial navigation,” in Proc. RSS, 2013.

[12] S. Ebcin and M. Veth, “Tightly-coupled image-aided inertial naviga-
tion using the unscented kalman filter,” in Proc. ION GNSS, 2007, pp.
1851–1860.

[13] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” J. Artif. Intell. Research, vol. 11,
pp. 391–427, 1999.

[14] M. Pupilli and A. Calway, “Real-time camera tracking using a particle
filter,” in Proc. BMVC, 2005, pp. 519–528.

[15] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment – a modern synthesis,” in Vision Algorithms: Theory and
Practice. Springer Verlag, 2000, pp. 298–375.

[16] D. Strelow and S. Singh, “Motion estimation from image and inertial
measurements,” IJRR, vol. 23, no. 12, pp. 1157 – 1195, December
2004.

[17] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Observability-
based Rules for Designing Consistent EKF SLAM Estimators,” IJRR,
vol. 29, no. 5, pp. 502–528, Apr. 2010.

[18] A. I. Mourikis, M. Li, and B. H. Kim, “Real-time motion tracking
on a cellphone using inertial sensing and a rolling-shutter camera,” in
Proc. ICRA, 2013, pp. 4712–4719.

[19] S. Leutenegger, P. T. Furgale, V. Rabaud, M. Chli, K. Konolige, and
R. Siegwart, “Keyframe-Based Visual-Inertial SLAM using Nonlinear
Optimization.” in Proc. RSS, 2013.

[20] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust
Features (SURF),” CVIU, vol. 110, no. 3, pp. 346–359, Jun. 2008.

[21] C. Tomasi and T. Kanade, “Detection and tracking of point features,”
Carnegie Mellon University, Tech. Rep. CMU-CS-91-132, 1991.

[22] P. Torr and A. Zisserman, “Robust computation and parametrization
of multiple view relations,” in Proc. ICCV, Jan 1998, pp. 727–732.

